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Abstract

Vortex street wakes behind a cylinder oscillating in a steady free stream have been studied experimentally and

numerically by several authors. Williamson and Roshko attempted a classification of the various wake patterns

observed as a function of two dimensionless parameters, the wavelength of the undulatory motion of the cylinder scaled

by the cylinder diameter and the amplitude of the transverse undulations scaled by cylinder diameter. Several

qualitatively distinct wake regimes were observed experimentally. These were classified in terms of the vortex patterns,

e.g., two singlets, two pairs, pair and singlet, and so on. The main series of experiments was conducted at Re ¼ 392.

Here, we construct a numerical method that allows us to perform corresponding numerical experiments at lower values

of Reynolds number. We document the accuracy of the numerical method by comparing to well-established results for

vortex wakes behind fixed cylinders. We then perform a number of numerical experiments for Re ¼ 140 and establish

several points of correspondence with the experiments. Our simulation results also shed light on the classification

scheme of Williamson and Roshko and suggest how this classification may change with Reynolds number. We find

remarkable sensitivity to details of the oscillation of the cylinder, in particular whether the oscillation takes place at

fixed streamwise velocity or at fixed cylinder speed along its trajectory.
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1. Introduction

In addition to the familiar Kármán vortex street behind a stationary cylinder in a uniform stream, several more

complex vortex patterns have been observed in the wakes of oscillating cylinders. There is a large body of literature on

experimental studies of vortex wakes behind cylinders oscillating either normally or in-line with the uniform stream [see

Khalak and Williamson (1999) for further references]. An attempt at classifying such vortex patterns has been made by

Williamson and Roshko (1988), henceforth referred to as WR, using a symbolic code of letters and numbers that

describes the combination of pairs and single vortices shed during each cycle of the forced oscillation of the cylinder.

For example, 2S indicates two single vortices shed per cycle, 2P indicates two vortex pairs shed per cycle, Pþ S signifies

a pattern in which one pair and a single vortex are shed in each cycle, and so on. WR gave a map of when the various
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vortex patterns would occur using a nondimensional wavelength–amplitude plane. We have used their classification and

map as a basis for our computational study.

Two major issues arise from the WR study. The first, recalled in Khalak and Williamson (1999), is the difference

between shedding patterns at low and at high Reynolds numbers which, to a large extent, remains unanswered. The

second is the role of three-dimensional disturbances. WR concentrated on higher values of Reynolds number, exploring

the value Re ¼ 392 in particular detail. For 300oReo1000 (which corresponds to a mildly turbulent wake) the vortex

synchronization regions in the wavelength–amplitude map of WR apparently remain invariant. On the other hand, for

Reo200 (which corresponds to the laminar regime accessible to our numerical experiments) the boundaries between the

various regions appear to shift, and the 2P mode disappears altogether, with the Pþ S mode taking its place. Khalak

and Williamson (1999) remarks that for experiments on vortex-induced oscillation as well the flow at low Re behaves

differently from high Re flow. In this case, one of the modes of the amplitude response (the so-called upper branch)

disappears. The authors suggest that the two phenomena (i.e., Pþ S replacing 2P for forced oscillation of the cylinder

and the suppression of the upper branch mode for vortex-induced oscillation) may be related. Those observations are

consistent with other experimental studies both for forced and free oscillations [Griffin and Ramberg (1974),

Anagnostopoulos and Bearman (1992), among others], where in the low-Reynolds-number regime the 2P mode is never

observed for forced oscillations and the upper-branch is never observed in vortex-shedding-induced oscillations. The

role of three-dimensional disturbances is more difficult to assess. In an experiment three-dimensional disturbances are,

of course, a fact of life. In a simulation based on the two-dimensional Navier–Stokes equations, three-dimensional

disturbances are impossible. When comparing the results of a low Reynolds number, two-dimensional simulation to a

higher-Reynolds number laboratory experiment, there are several sources that may be responsible for observed

differences.

Besides the experimental work referenced above, we mention some analytical and computational work on complex

wake structures of forced and freely oscillating cylinders. Aref and Stremler (1996) applied their analysis of the motion

of three-point vortices with zero net circulation in a periodic strip to the observations of WR of the Pþ S wake and

were able to find reasonable correspondence with the experimental results although several parameters (e.g., the vortex

circulations) could be adjusted. This analysis suggested that many additional possibilities, so far not observed

experimentally, exist for the vortex structure of the wake behind an oscillating cylinder. We have begun referring to

such vortex patterns as ‘‘exotic wakes’’. Several direct numerical simulation studies have been performed on freely

oscillating cylinders for Re up to 350 [see Khalak and Williamson (1999) for a list of references]. We mention Mittal and

Tezduyar (1992) and Mittal and Kumar (1999), who studied the vortex-induced in-line and cross-flow oscillations of a

cylinder using a deforming spatial domain/stabilized space–time finite element formulation of the Navier–Stokes

equation. Newman and Karniadakis (1996, 1997) and Evangelinos and Karniadakis (1999) studied the wake of flexible

and rigid cylinders and cables subject to vortex-induced vibrations using spectral elements to discretize the cross-

sectional plane with a Fourier expansion in the spanwise direction. These works are consistent with the low Re

experiments for free vibration that do not exhibit an upper branch mode of the amplitude response. They only find the

2S mode throughout the lock-in regime. On the other hand, the Pþ S mode has been found in low Re simulations of

forced oscillations: Meneghini and Bearman (1995) used the discrete vortex-in-cell formulation, a two-dimensional

hybrid numerical method where convection of vorticity is modelled in a Lagrangian way incorporating viscous diffusion

by an Eulerian scheme. They solved the problem in a frame of reference fixed to the cylinder, imposing an oscillating

cross-flow. Blackburn and Henderson (1996) presented two-dimensional numerical simulations of vortex-induced and

forced cross-flow oscillations using a spectral element spatial discretization with a stiffly stable time integration scheme

to solve the Navier–Stokes equation in an accelerating frame of reference attached to the cylinder.

In this paper, we primarily study the periodic vortex structures produced in the wake of a cylinder subject to forced

oscillations at low Re, exploring in particular the phenomenon of the Pþ S structure. To this end, we have developed a

new numerical approach that we introduce in Section 2. To validate our approach and numerical code, we explored the

Strouhal number versus Reynolds number curve for our computed vortex street wakes for a stationary cylinder in the

range 50oReo180, finding excellent agreement with this well-established empirical relationship. Armed with these

benchmarking results, we experiment with wakes of oscillating cylinders in Section 3, and we explore a section of the

WR map at Re ¼ 140, identifying similarities and differences with the higher Re results reported in WR. Our

concluding Section 4 contains discussion and outlook for further work.
2. The kinematic Laplacian equation method

In this section, we shall introduce a new type of vorticity–velocity method based on a space–time splitting of the

problem that solves the time evolution of the vorticity as an ordinary differential equation on each node of the spatial
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discretization. The input for the vorticity transport equation at each time-step is computed from the spatial solution for

the velocity field provided by a linear PDE expression in weak form called the kinematic Laplacian equation (henceforth

referred to as KLE). The input of the KLE being provided by the time integration of the vorticity.

A comprehensive description of the mathematics and numerical implementation of the KLE method can be found in

Ponta (2005). Here, we summarize the most essential points in order for this paper to be self-contained.

2.1. Hybrid vorticity–velocity formulation

During the last three decades several studies appeared concerning the representation of the Navier–Stokes equations

in terms of nonprimitive variables (namely the vorticity and the velocity potentials) instead of the classical formulation

in terms of the primitive variables (velocity and pressure). This family of approaches is generally known as vorticity-

stream function ðx;wÞ methods. More recently, together with those works on the vorticity-stream function formulation

and as a natural extension of them, a comparatively smaller number of studies were presented using a hybrid

formulation in terms of the primitive and nonprimitive variables velocity and vorticity. As several authors pointed out

(Quartapelle, 1993; Clercx, 1997; Speziale, 1987), the vorticity–velocity ðx; vÞ methods (as they are generally known)

present some advantages compared with the classical formulation on primitive variables or with the vorticity-stream

function methods, namely: (a) The pair of variables involved is particularly suited for a dynamic description of

incompressible viscous flows. The vorticity is governed by a well understood dynamical equation while the velocity,

which embodies the kinematical aspect of the problem, can be related to the vorticity by a simple elliptic equation. In

vortex-dominated flows the vorticity advection is a fundamental process determining the dynamics of the flow, hence

the vorticity–velocity description is closer to physical reality. (b) The variety of boundary conditions that can be chosen

for the velocity potentials due to the nonuniqueness of the velocity representation is avoided since the velocity is

supplemented by unique boundary conditions. (c) In some specific situations like that of external flows, boundary

conditions at infinity are easier to implement for the vorticity than for the pressure. (d) The noninertial effects only enter

the solution procedure of the ðx; vÞ formulation via the proper implementation of the initial and boundary conditions.

Hence, the general applicability of an algorithm based on the ðx; vÞ formulation is enhanced because it is independent of

whether or not the frame of reference is inertial.

The first uses of the ðx; vÞ formulation of the incompressible Navier–Stokes equations were reported by Fasel (1976)

who analyzed the stability of boundary layers in two dimensions and by Dennis et al. (1979) who derived a numerical

method for computing steady-state three-dimensional flows. Both approaches were based on finite difference

techniques. Since then several investigations have been conducted on incompressible hybrid variable models using

variations of the finite difference approach [e.g. see Gatski et al. (1989), Napolitano and Pascazio (1991), Guj and Stella

(1993)]. A vorticity–velocity finite element solution of the three-dimensional compressible Navier–Stokes equations

have been presented by Guevremont et al. (1993) who investigated the steady state flow in a cubic cavity for several

Mach numbers. More recently Clercx (1997), then Davies and Carpenter (2001), introduced pseudospectral procedures

for the ðx; vÞ formulation. Lo and Young (2004) presented an arbitrary Lagrangian–Eulerian ðx; vÞ method for two-

dimensional free surface flow, using finite difference discretization for the free surface and finite element discretization

for the interior of the domain.

A disadvantage of the vorticity–velocity formulation, compared with the formulation in primitive variables is that in

the most general three-dimensional case the ðx; vÞ formulation requires a total of six equations to be solved instead of

the usual four of the primitive-variable approach (Clercx, 1997). The KLE method is characterized by a complete

decoupling of the two variables in a vorticity-in-time/velocity-in-space split algorithm, thus reducing to three the

number of unknowns to solve in the time integration process. This time–space splitting also favors the use of adaptive

variable-stepsize/variable-order ODE algorithms which enhances the efficiency and robustness of the time integration

process.

A comprehensive study of the theoretical basis of the vorticity–velocity formulation in two and three dimensions can

be found in Quartapelle (1993, Chapter 4), including a series of theorems proving the equivalence between the ðx; vÞ
formulation of the incompressible Navier–Stokes equations and their classical formulation in primitive variables

(velocity–pressure).

2.2. Vorticity boundary conditions

A common problem to all the methods based on nonprimitive or hybrid variables is the absence of boundary

conditions for the vorticity in presence of no-slip boundary conditions for the velocity. In the case of the ðx;wÞ
formulation it also implies that the Poisson problem for the stream function with both Dirichlet and Neumann
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conditions is overdetermined. There are several different ways of overcoming this difficulty. Some earlier approaches

like the boundary vorticity formula or the vorticity creation methods use different techniques to define the boundary

values of vorticity in terms of the stream function (or the velocity) by means of some approximate formula applied

locally at the no-slip boundary. They are roughly equivalent, however their implementation may differ remarkably

depending on the type of discretization used (Quartapelle, 1993; Anderson, 1988; Chorin, 1973, 1978).

An alternative viewpoint have been introduced by Quartapelle and Valz-Gris (1981) and Quartapelle (1981). They

showed that in order to satisfy the no-slip boundary conditions for the velocity, the vorticity should be subject to an

integral constraint. This integral condition enforces the orthogonality of the abstract projection of the vorticity field

with respect to the linear space of the harmonic functions defined on the domain. This condition is a direct consequence

of the boundary conditions on the velocity, and ensure satisfaction of essential conservation laws for the vorticity. An

important aspect of the integral vorticity conditions is their nonlocal character: the vorticity distribution in the interior

of the domain and on its boundary is affected at each time by the instantaneous values of the tangential and normal

components of the velocity along the entire boundary. In other words, the distribution of the vorticity in the whole

domain is constrained by the velocity boundary values. A detailed description of the mathematical basis and the

different numerical implementations of the orthogonal-projection operation of the vorticity field for the ðx;wÞ
formulation can be found in Quartapelle (1993).

In our method, the issue of the vorticity boundary conditions on the no-slip surface is dealt with by a sequence of two

solutions of the KLE under a different set of velocity boundary conditions. Thus, inside each time step, we perform two

projectional operations of integral character applied on the velocity field which ensures that the vorticity evolves in time

in a way compatible with the time-dependent velocity boundary values.

2.3. The Laplacian approach as a ðx; vÞ method: the KLE

Starting from the well-known vector identity

r2v ¼ =.=v ¼ =ð=.vÞ � =� ð=� vÞ, (1)

we found that a variational form of this ‘‘Laplacian’’ expression could be advantageously used as the spatial

counterpart of the vorticity transport equation in a new type of vorticity–velocity method.

Let us consider the full three-dimensional incompressible Navier–Stokes equation in vorticity form for a flow domain

O with solid boundary qO and external boundary of O in the far field, in a moving frame of reference fixed to the solid,

qx
qt
¼ �v.=xþ nr2xþ x.=v. (2)

If we have the velocity field v in O at a certain instant of time, we can rewrite Eq. (2) as

qx
qt
¼ �v.=ð=� vÞ þ nr2ð=� vÞ þ ð=� vÞ.=v (3)

and solve for x at each point of the discretization of O by integration of Eq. (3) using an ODE solver.

Now, let us revisit Eq. (1) but this time impose a given distribution for the vorticity field the rate of expansion:

r2v ¼ =D� =� x, (4)

=.v ¼ D, (5)

=� v ¼ x. (6)

Here x is the vorticity field in O given by Eq. (3) and D is the corresponding rate of expansion (i.e. the divergence field).

The KLE is essentially defined as a solution of Eq. (4) in its weak form under the simultaneous constraints (5) and (6).

Let us consider the orthogonal decomposition of the velocity field in its irrotational nonsolenoidal component vD, its
solenoidal nonirrotational component vo and its irrotational and solenoidal (i.e., harmonic) component vh. Under

prescribed boundary conditions for the normal component of the velocity and given distributions for the vorticity x

and the rate of expansion D, this decomposition v ¼ vD þ vo þ vh is uniquely determined (Batchelor, 2000, Section 2.7).

Constraints (5) and (6) ensure that vD and vo are properly solved:

=.v ¼ =.vD ¼ D, (7)

=� v ¼ =� vo ¼ x. (8)
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Now, applying the orthogonal decomposition to the total velocity field v in Eq. (4) we have

r2ðvh þ vD þ voÞ ¼ r
2vh þ =ð=.vDÞ � =� ð=� voÞ

¼ =D� =� x; ð9Þ

substituting Eqs. (7) and (8) in Eq. (9) yields

r2vh ¼ 0, (10)

which provides the solution of the harmonic component vh. Thus, the KLE construction ensures that all three

components of the velocity field are properly solved.

For incompressible cases, such as discussed here, D is simply set to zero. For compressible cases, D can be a general

distribution given by a solution analogous to Eq. (3) but for the divergence transport equation (i.e., the momentum

equation in divergence form) together with a solution of the mass transport equation and adding to Eqs. (2) and (3) the

terms eliminated by the application of the incompressibility condition.

Now, provided that we can find a way of imposing on the velocity field the no-normal-flow condition

v.n ¼ 0, (11)

and the no-slip condition

v.s ¼ 0, (12)

on the solid boundary qO in a way compatible with the vorticity distribution at that time, we obtain a compatible

solution for the velocity. Then, from this velocity field we produce the right-hand side of Eq. (3) required to advance the

time-integration process to the next step. In order to impose the no-normal-flow and no-slip conditions on qO together

with the correspondingly compatible boundary conditions on the vorticity, we designed a scheme based on two

consecutive solutions of the KLE, which goes as follows:
(i)
 given a velocity field for the previous time-step vn�1 (which is compatible with the correspondent vorticity field

xn�1), compute the next vorticity field ~xn by time integration of Eq. (3) at each node of the spatial discretization.
~xn is still incompatible with the velocity boundary conditions on the solid surface qO;
(ii)
 get ~xn
0 by setting homogeneous conditions on qO for ~xn (e.g., setting to zero the nodal values of ~xn on qO once a

discretization has been obtained);
(iii)
 compute a free-slip velocity field,~vn,by solving the KLE (i.e., solving (4) in its week form under the simultaneous

constraints (5)–(6), with D ¼ 0); this solution uses ~xn
0 as input, applying only the no-normal-flow ðv.n ¼ 0Þ

condition on qO with the normal derivative of the tangential velocity set to zero;
(iv)
 from~vn, compute the new vorticity field as xn ¼ =�~vn applying both the no-normal-flow ðv.n ¼ 0Þ and the no-slip

condition ðv.s ¼ 0Þ on qO; thus, xn is a modified vorticity field produced in response to the induced slip which is

compatible with the velocity boundary conditions on qO;

(v)
 compute the final velocity field vn, by solving again the KLE but this time using xn as input and applying both the

no-normal-flow and the no-slip condition on qO; in this way, vn gives the weak solution for the velocity field at

time-step n, which satisfies the time-dependent boundary conditions for the velocity, and simultaneously, its

correspondent vorticity field xn is compatible with those velocity boundary conditions.
In steps (iii)–(v) we apply the corresponding time-dependent, Dirichlet conditions for the velocity on qO1, the
external boundary of O in the far field.

It is interesting to note that all the physics of the problem is contained in step (i) and it is solved as an ODE problem

on the vorticity. Steps (ii)–(v) are concerned with the computation of a spatial solution for the velocity field which is

compatible with both: the time-evolved vorticity distribution obtained in (i) and the time-dependent boundary

conditions for the velocity. Setting homogeneous conditions on qO in step (ii) makes the vorticity field consistent with

the free-slip solution of the velocity field to be computed in step (iii). Then, enforcing of the no-slip condition on qO in

step (iv) gives the vorticity values in the boundary in response to the induced slip. This is the analog of the vorticity-

creation process typically found in the early hybrid and nonprimitive methods mentioned above. Thus, we obtain our

compatible vorticity boundary conditions on the solid surface by sequence of two solutions of the KLE under a

different set of velocity boundary conditions. These two projectional operations of integral character applied on the

velocity field (and performed inside each time step) ensure that the vorticity evolves in time in a way compatible with the

time-dependent velocity boundary values. The algorithmic sequence defined in (i)–(v) is repeatedly performed inside the

time-iteration process commanded by an adaptive variable-stepsize ODE solver. As we shall see later, we tested a
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predictor–corrector (ABM–PECE) solver and a fifth-order adaptive Runge–Kutta solver (Press et al., 2002). In both

cases, solution is checked by the adaptive stepsize control by monitoring of local truncation error, which proved to be

quite stable for this application.

The algorithmic sequence defined in (i)–(v) has the advantage of producing a complete decoupling between the time

integration of the vorticity transport equation and the space solution of the Poisson equation for the velocity field. The

linear spatial solution defined in Eqs. (4)–(6) (i.e., the KLE) can be implemented in just one variational formulation.

This implementation leads to a global matrix which is independent both of time and of the particular constitutive

relation of the continuum media. Then, this matrix can be factorized at the moment of assembling and its triangular

factors used as many times as needed so long as we are using the same grid. As we said, this is so even for problems with

different constitutive relations because all the physics of the problem is taken into account only in the time-integration

process for the vorticity, i.e., the spatial solution is purely kinematic. Thus, the space solution performed at each time

step reduces to a pair of back-substitution processes where we simply change the right-hand side vector of the linear

system in order to impose consecutively the boundary conditions (11)–(12). This scheme simplifies the issue of obtaining

the vorticity in order to satisfy the boundary conditions on the velocity. Note that it is not a purely local manipulation

performed on the boundary, this double solution of the velocity field is calculated over the entire domain involving two

projectional operations of nonlocal character.

2.4. Numerical implementation of the KLE method

For the discretization of the KLE in two-dimensional applications we used nine-node biquadratic isoparametric finite

elements, which though ‘‘expensive’’ in computational terms possess a high convergence rate and, due to their

biquadratic interpolation of the geometric coordinates, provide the additional ability of reducing the so-called skin-

error on curvilinear boundaries when compared to linear elements [for a detailed description of the isoparametric-

element technique and its corresponding interpolation functions see Bathe (1996)]. In order to combine the power of

convergence of the nine-node quadrilateral isoparametric element with the geometrical ability of a triangular grid to

create suitable non structured meshes with gradual and smooth changes of density, we implemented what we called tri-

quadrilateral isoparametric elements (Ponta and Jacovkis, 2001, 2003). The tri-quadrilateral elements consist of an

assembling of three quadrilateral nine-node isoparametric elements in which each triangle of a standard unstructured

mesh is divided into. Fig. 1 shows a schematic example of a mesh of tri-quadrilateral finite elements obtained from the

original triangular discretization.

Another advantage of the tri-quadrilateral scheme is that, by a previous condensation of the nodes that lie inside the

triangle, we can significantly reduce the number of nodes to solve in the final system, subsequently recovering the values

for the internal nodes from the solution on the non condensable nodes. Fig. 2 shows a schematic view of the internal

topology of the tri-quadrilateral element including the in-triangle global numeration of the nodes and indicating the

three nine-node subelements (I)–(III).

The internal nodes 13–19 may be expressed in terms of nodes 1–12 which lay on the elemental boundary following the

classical procedure for elemental condensation (Bathe, 1996). This process of condensation allows us to reduce the size

of the new system to solve to approximately a 40% of the original system. As it was mentioned above, none of the

matrices involved in the finite element solution depend on x nor t, so they can be computed once for a given mesh,
Fig. 1. An example of a mesh of tri-quadrilateral finite elements obtained from a standard triangular discretization.
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stored and used as many times as needed to compute the solution for the discrete velocity field V̂. The global matrix of

the system is symmetric and positive definite, so it lends to factorization by Cholesky decomposition and its triangular

factor is repeatedly used to solve V̂ through back-substitution.

For the implementation of the time-integration procedure we evaluate the right-hand side of Eq. (3) applying the

corresponding differential operators onto the discrete velocity field V̂ calculated following steps (ii)–(v) in Section 2.3.

The normal procedure to calculate derivatives on the nodes of a mesh of isoparametric elements consists in computing

the derivatives in the Gaussian points adjacent to each node and interpolate their results following several alternatives

techniques. A detailed description of this procedure can be found in Bathe (1996). In our case we used area-weighing

interpolation which prove to be very effective. The contribution of each Gaussian point to its corresponding node

depends on the constitution of the mesh and can be calculated at the moment of assembling. A set of arrays that

perform the differential operations is assembled simultaneously with the finite-element matrices, so they can also be

computed once for a given mesh, stored and used as many times as needed to provide evaluation of Eq. (3) right-hand

side for an advanced package ODE solver. We choose a multivalue variable-order Adams–Bashforth–Moulton

predictor–corrector (ABM–PECE) solver with adaptive stepsize control which proved to be quite efficient for this

application. We also tried a fifth order adaptive-stepsize Runge–Kutta algorithm with good results. For the first DNS

low-Reynolds-number applications of the KLE method, the function prove to be smooth enough for the adaptive

ABM–PECE algorithm to work very efficiently, in these smooth cases the predictor–corrector outperforms other

alternatives like the Bulirsch–Stoer method [see Press et al. (2002)].

The reader is asked to refer to Ponta (2005) where issues regarding the influence of the resolution of the spatial and

time discretizations are addressed by a set of validation tests contrasting against analytical solutions and experimental

results. In Ponta (2005), convergence tests were repeatedly performed for a succession of uniformly distributed

unstructured meshes, progressively refined, and the max-norm and mean-norm of the error was evaluated. Ponta (2005)

also includes comparison plots of the results produced by the KLE method and experimental measurements for the

well-studied case of a circular cylinder started impulsively and then subjected to steady translational motion, finding an

excellent agreement.
3. Numerical experiments on vortex wakes of an oscillating cylinder

Having explained the methodology, and established that it reproduces the known vortex wake phenomenology for a

uniformly translating cylinder, we felt confident that we had a computational tool suitable for exploring aspects of wake

formation from a cylinder executing an oscillatory motion in an otherwise stationary fluid. Fig. 3 shows an example of a

mesh of tri-quadrilateral elements used.

In this section we report on our results regarding the formation, shedding and further evolution of vortex patterns

produced in the wake of a cylinder executing forced oscillations for the range of Reynolds number below 180. This is,

approximately, the periodic laminar wake regime for the usual, Kármán vortex street case. We concentrated on the case



ARTICLE IN PRESS

-10 0 10 20 30 40 50 60 70 80

-15

-10

-5

0

5

10

15

Fig. 3. An example of a mesh of tri-quadrilateral finite elements used for the present analysis (geometrical coordinates are given in

diameters).

F.L. Ponta, H. Aref / Journal of Fluids and Structures 22 (2006) 327–344334
of Re ¼ Ud=n ¼ 140 since this case is representative of the range and shows a variety of arrangements of vortex

structures. In our exploration we were heavily influenced by the experimental study WR, mentioned in the Introduction,

in which a classification of vortex wake patterns is proposed. WR construct a ‘map’ of vortex synchronization regions

using as coordinates the nondimensional wavelength and nondimensional amplitude of the oscillations of the cylinder,

i.e., the coordinates in the map are, l=d, and A=d, where l is the wavelength of the cylinder oscillations and A its

amplitude. They observed that the ðl=d ;A=dÞ map is partitioned into ‘synchronization regions’, and they studied the

case Re ¼ 392 in particular detail. In each ‘synchronization region’ a certain vortex wake pattern prevails, and WR

denote these by symbols such as ‘Pþ S’, ‘2S’, and ‘2P’. Here ‘S’ signifies a ‘singlet’ or single vortex, and ‘P’ signifies a

pair of vortices of opposite signs. A pattern such as ‘Pþ S’, then, is one in which in each oscillation cycle the cylinder

appears to shed a pair of vortices of opposite sign and a single vortex. Similarly, ‘2P’ signifies a pattern in which two

pairs are shed per cycle, ‘2S’ a pattern in which two singlets are shed per cycle, and so on. The usual Kármán vortex

street would simply be designated ‘2S’ in this classification.

For two opposite vortices shed per cycle, the possible vortex wake patterns are quite limited and are all, essentially,

versions of a vortex street (with variations in the ratio of downstream, i.e., inter-row, to intra-row spacing). The vortex

wake patterns of an oscillating cylinder can be more complex than the Kármán street. As we noted in the opening

section, we have started using the term ‘exotic wakes’ for these patterns. One may think of the system as a forced,

nonlinear oscillator. The shedding frequency corresponding to the free stream velocity may be thought of as the

‘natural’ frequency of the system. The frequency of oscillation of the cylinder is an external forcing frequency. Due to

the nonlinear coupling between these two oscillations a variety of combination frequencies can potentially be excited.

Several of these frequencies may correspond to new wake patterns. Even if we restrict ourselves to cases where the wake

pattern is stationary, i.e., the vortex configuration produced in each oscillation and shedding cycle is identical to that

produced in the preceding oscillation/shedding cycle, there are many more possibilities already with three vortices per

cycle than there are with two. A full classification of such patterns, assuming the vortices are point vortices, has recently

been given by Stremler (2003).

According to the experiments reported by WR the ðl=d ;A=dÞ map at Re ¼ 392 is dominated by the vortex

synchronization regions ‘Pþ S’ and 2P. WR note that the boundary between these regions depends on Reynolds

number. Thus, at Re4300 part of the ‘Pþ S’ region is taken over by a ‘2P’ region. At Reo300, where our numerical

experiments are exclusively performed, the ‘2P’ region contracts or disappears altogether. The boundaries between the

various regions are difficult to determine experimentally and their theoretical basis is unclear. However, we have a crude

argument that (a) produces delineations in the WR map that are not altogether dissimilar from the boundary curves

between vortex synchronization regions, and (b) may help to explain how and why the regions shift with Reynolds

number. We also found another structure which we can call a hyper-Kármán vortex street produced by the coalescence

of pairs of smaller vortices into a new Kármán-like arrangement. This structure is produced when the cylinder oscillates

following a constant-speed trajectory (here Re ¼ Ud=n ¼ 140 is defined based on the constant tangential speed of the

cylinder). We pause to develop these ideas in the next two subsections.
3.1. On the boundaries between vortex synchronization regions in the WR map

WR observed that the ðl=d;A=dÞ map correctly represents the synchronization regions for the range 300oReo1000.

Now, the Strouhal number for the case of a nonoscillating cylinder remains nearly constant in the 300oReo1000
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range. For Re4300 the St–Re curve asymptotes to a constant value of St ¼ 0:2, approximately. Thus, in the

oscillator analogy, the ‘natural frequency’ of the system is largely fixed, and only the ‘forcing frequency’ varies.

Assuming a constant value of St ¼ 0:20 throughout the range, it is possible to establish a correspondence between

the nondimensional wavelength l=d and the ratio between the period of the forced oscillation ðTe ¼ l=UÞ and the

period of vortex shedding for a nonoscillating cylinder ðTs ¼ d=ðU StÞÞ, viz. Te=Ts ¼ St l=d ¼ 0:20l=d. This

correspondence allows one to think of l=d as a measure of the period of the forced oscillation scaled by what we

may call the period of natural oscillation of the system (i.e., the period of the Kármán vortex street for a nonoscillating

cylinder).

On the other hand, for Reo300, and certainly for Re ¼ 140 where most of our numerical simulations were

conducted, the Kármán shedding frequency varies quite considerably with Reynolds number. Now, in an oscillatory

motion of the cylinder, with a fixed towing speed in the upstream direction, the speed of the cylinder relative to the fluid

through which it is being moved varies, and the effective Re of the cylinder motion along its trajectory fluctuates. For

Reo300, the strong dependence of St implies that the period of natural oscillation changes considerably. Moreover, the

amplitude of that fluctuation depends on the nondimensional parameters l=d and A=d, so it will vary throughout the

map; see Ponta and Aref (2005). To see the potential consequences of this variation, consider the following motion of

the cylinder center:

xcyðtÞ ¼ Ut, (13)

ycyðtÞ ¼ A sin 2p
t

Te

� �
¼ A sin 2p

tU

l

� �
. (14)

The corresponding velocities are

VxcyðtÞ ¼ U , (15)

VycyðtÞ ¼ 2pU
A

l
cos 2p

tU

l

� �
. (16)

The peak value for the speed of the cylinder along its trajectory is

Û ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A

l

� �2
s

, (17)

with a corresponding peak value for the associated Reynolds number,

R̂e ¼
d

n
U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A

l

� �2
s

¼ Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A

l

� �2
s

. (18)

The deviation of the instantaneous vortex shedding period, Ts, from its value corresponding to peak Reynolds number,

relative to the period of forced oscillation, Te ¼ l=U , is

D ¼
Ts � T̂ s

Te

¼
ðd=U StÞ � ðd=U ŜtÞ

l=U
¼

1=St� 1=Ŝt

l=d
, (19)

where T̂ s and Ŝt are the shedding period and Strouhal number associated with R̂e. Taking the St–Re relation

summarized in the experimental best-fit line given in Roshko (1954),

St ¼
0:212ð1� 21:1=ReÞ; Reo180;

0:212ð1� 12:7=ReÞ; Re4300:

(
(20)
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Substituting it into Eq. (19) and then using Eq. (18), we finally have,

D ¼

1

0:212l=d
1�

21:1

Re

� ��1
� 1�

21:1

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A=d

l=d

� �2
s

0
BBBB@

1
CCCCA

�1
0
BBBBB@

1
CCCCCA; Reo180;

1

0:212l=d
1�

12:7

Re

� ��1
� 1�

12:7

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A=d

l=d

� �2
s

0
BBBB@

1
CCCCA

�1
0
BBBBB@

1
CCCCCA; Re4300;

8>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>:

(21)

which gives D in terms of Re and the parameters of the ðl=d ;A=dÞ map.

Fig. 4(a) shows the original map as presented in WR on which we have superimposed the 0.001, 0.015 and 0.06

isolines of D for Re ¼ 392, a value of Re that is representative of the range of Reynolds numbers for which the WR map

is valid. We chose these particular values for the isolines because they roughly coincide with the 2P and Pþ S region

boundaries. This coincidence suggests that the vortex synchronization region boundaries are, somehow, associated with

definite fluctuation levels in the ‘natural frequency’ of shedding for the cylinder. These fluctuations arise due to the

oscillatory changes in the speed of the cylinder relative to the background fluid.

Fig. 4(b) shows the same map but with isolines of D for Re ¼ 140 superimposed. We notice that the zone of D
between the 0.015 and 0.06 isolines, which in the original WR map corresponded to Pþ S states, has now rotated

clockwise down to the right, and occupies the region where the 2P states were before. Furthermore, the region between

the 0.001 and 0.015 isolines, corresponding previously to 2P states, has moved further down to the point where it almost

has fallen out of the region where the 2P patterns were previously observed. Thus, if we again assume that the

boundaries of the different vortex synchronization regions are, somehow, associated with isolines of D, this would

explain why the 2P state is not observed at low Reynolds numbers and the Pþ S state takes its place, i.e., the level of

fluctuation of the shedding frequency is apparently too high to produce a 2P pattern, which for reasons that we do not

fully comprehend is more sensitive to ‘detuning’ than Pþ S. Note that for these lower Reynolds numbers the Strouhal

number is much more sensitive to changes in Reynolds number than is the case at higher Reynolds number. This

speculative line of reasoning is consistent with the idea that the 2P and Pþ S states depend on similar mechanisms for

their generation, but these mechanisms requires a finer balance for a 2P wake to be produced than for a Pþ S wake.

The experimental observations by WR indicate that a 2P wake depends on a splitting of the region of vorticity that is

being shed due to the straining by neighboring vortices. Thus, instead of having one vortex pair in each cycle, we

produce two pairs. As we show below, in the Pþ S wake, even when regions of both signs of vorticity in the near wake

are stretched, only one of them splits while the other remains strong enough to ‘recover’, and we produce just three

vortices per cycle. In both cases a vortex splitting process is key to forming the vortex wake structure, but it is

reasonable to assume that the mutual influence of regions of positive and negative vorticity necessary for the 2P pattern

might require a higher degree of synchrony and thus be the more sensitive to fluctuation levels in time scales or

frequencies.
3.2. Formation of Pþ S vortex streets at low Reynolds number

In Fig. 4(b), we have indicated the parameter sets explored in our study. Point A1 ðl=d ¼ 7:5;A=d ¼ 1Þ produced the

clearest Pþ S arrangement. In Fig. 5, we show a comparison of a gray scale plot of the vorticity field produced by the

kinematic Laplacian equation method for point A1 with an unpublished experimental laser-fluorescene photograph for

an oscillating cylinder with Re ¼ 140, l=d ¼ 6:07, and A=d ¼ 0:5. This photo was kindly provided by Prof. C. H. K.

Williamson.

Fig. 6 shows the nondimensional vorticity field for point A1. We checked that for each triplet the sum of the

circulation of the two positive vortices equals the opposite of the circulation of the negative vortex, so the complete

circulation produced in one cycle is very close to zero. Fig. 7 shows a sequence plot of the nondimensional vorticity field

during the vortex splitting process that produces the Pþ S pattern. Starting at the bottom-left panel, and following the

sequence clockwise, we see how the positive (lower) half of the near wake is stretched by the strain rate field of the

neighboring vortices until it breaks into two separated vortices. If we follow the evolution of the negative (upper) half of

the near wake, we notice that it also starts to split in two but, contrary to what happens to its positive counterpart, a
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Fig. 4. Original ðl=d ;A=dÞ map from Williamson and Roshko (1988) including the 0.001, 0.015 and 0.06 isolines of D (defined in the

text) for (a) Re ¼ 392 and (b) Re ¼ 140. Panel (b) also includes the location of the parameter choices used in the numerical

experiments. The labelled markers indicate points of particular interest which are referred to in the text.
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Fig. 6. Nondimensional vorticity field of the Pþ S wake for Re ¼ 140, l=d ¼ 7:5, and A=d ¼ 1, calculated by the kinematic Laplacian

equation method. This figure corresponds to Fig. 5 flipped about a horizontal axis.

Fig. 5. Comparison of flow visualization of a Pþ S wake of an oscillating cylinder for Re ¼ 140 by C. H. K. Williamson (private

communication) with a gray scale plot of the vorticity field produced by the kinematic Laplacian equation method at the same

Reynolds number.
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major portion of the shed vorticity remains together, and this vorticity forms a vortex that is strong enough to recover

its ‘tail’. This last process takes longer than the splitting and completes the sequence of close-up views used in Fig. 7. We

can follow the successive triplet structures as they progress and evolve downstream in Fig. 6.

The empty circles in Fig. 4(b) correspond to various parameter sets explored, some of which showed a Pþ S structure

with a weaker pattern than point A1. For example, Fig. 8 shows the nondimensional vorticity field for point B
(l=d ¼ 8:5, A=d ¼ 1), which may be taken as a representative of a weak Pþ S mode. Notice that the weak, upper,
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Fig. 7. Sequence plot of the vortex splitting process that produces the Pþ S pattern. The sequence begins at the bottom left panel and

may be followed by viewing the other panels clockwise.
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positive vortex in the structure is not recovered by the strong, lower, positive vortex and remains independent (so the

pattern is still a Pþ S) but the third vortex tends to dissipate quickly as the wake moves downstream.

Point C ðl=d ¼ 8:5;A=d ¼ 0:3Þ lies far out of the Pþ S region, in a zone marked as ‘no synchronized pattern

observed’ in the WR map. Fig. 9 shows the nondimensional vorticity field for this case with its unorganized pattern of

vortices. This is consistent with the experimental observations.

3.3. Constant-speed trajectory and a ‘hyper-Kármán vortex-street’

In an attempt to reduce the effects of the fluctuations of the speed of the cylinder along its trajectory, we moved the

cylinder along a new path in which the speed of motion relative to the fluid is kept constant. The expression for the

tangential speed of the cylinder Utg is

Utg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

x;cy þ V2
y;cy

q
. (22)
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Fig. 9. Nondimensional vorticity field of an unorganized wake pattern for Re ¼ 140 ðl=d ¼ 8:5;A=d ¼ 0:3Þ.
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Fig. 8. Nondimensional vorticity field of the weak Pþ S wake for Re ¼ 140 (l=d ¼ 8:5, A=d ¼ 1).
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Keeping the same vertical speed (in order to keep the same period of forced oscillation) and adjusting the horizontal

component of the velocity to keep Utg constant and equal to the reference speed U, we have

Vx;cy ¼ U

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2p

A

l
cos 2p

tU

l

� �� �2
s

. (23)

Fig. 10 shows an example of a constant-speed path for the set of parameters of point A1 ðl=d ¼ 7:5;A=d ¼ 1Þ. Panel

(a) shows one cycle starting from the upper part of the path. The geometrical coordinates are given in diameters, the

solid line indicates the path of the center of the cylinder and the dotted circles show its circumference. The average

horizontal speed Ux;m for this set of parameters equals 0.789 of the reference speed U. Fig. 10(b) shows the trajectory of

the cylinder with respect of a reference frame moving horizontally at constant speed Uxm. Although this motion

nominally has the same values of l and A as before, the cylinder really has acquired a slight streamwise oscillation

relative to the steady translation of the earlier motion.

Fig. 11 shows the nondimensional vorticity field for the constant-speed path for the set of parameters of point A1. In
this case, we have two single vortices shed in each cycle and the wake initially shows a relatively well-defined and close-

packed Kármán arrangement that extends downstream for a distance of about 10 diameters. Thus, for the range of

parameters that for the variable speed trajectory produces the Pþ S wake, the constant-speed counterpart of that

trajectory produces a symmetric wake in which the asymmetric splitting process has disappeared and a more regular

(and perfectly symmetric) primary vortex street ensues. This proves our hypothesis that the speed-fluctuations play an

important role in the splitting process and affect the symmetry of the primary wake, which is responsible of producing a

Pþ S wake instead of a 2P.

Later, however, a process of merging of neighboring vortices within either row takes place. This process form a

set of larger vortices with twice the downstream and cross-stream spacing of the original street and that we may call a
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‘hyper-Kármán vortex-street’. Fig. 12 shows a sequence of plots of the nondimensional vorticity field during the vortex-

merging process. Starting at the bottom-left panel and following clockwise as before (in this case each loop around the

panels of the figure corresponds to two cycles of the oscillation), we see how the near wake produces two separated

vortex units per cycle that arrange as a close-packed Kármán street, then the later pair of this initial arrangement is

absorbed by the next pair to form the bigger structures which halve the frequency of the forced oscillation.

The formation of a secondary vortex street in the wake of a stationary cylinder in a uniform stream was observed by

Taneda (1959) by using flow visualization techniques. In these experiments the primary Kármán vortex street decays

downstream, and the secondary vortex street is formed with a larger scale of vortices (and thus a lower frequency) than

those in the primary Kármán street. Cimbala et al. (1988) and Williamson and Prasad (1993) also studied the

mechanism of formation of the secondary vortex street in unforced wakes. Matsui and Okude (1983) experimented with

flow visualization and hot-wire measurements on acoustically forced cylinder wakes, observing that a secondary vortex

street is formed as a result of merging of the primary Kármán vortices. When the wake was forced acoustically by one

half or one third of the frequency of the Kármán vortices, every two or every three vortices merged. Aref and Siggia

(1981) and Meiburg (1987), studied numerically the formation of the secondary vortex street applying subharmonic

perturbations to vortex blobs of opposite sign that model the Kármán street. In both cases, vortex merging was

observed, which suggests its importance for the formation of the secondary street. Inoue and Yamazaki (1999) solved

the Navier–Stokes equations using finite differences and observed the merging-by-pairing process in the wake of
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Fig. 12. Sequence plot of the vortex–merging process that produces the ‘hyper-Kármán vortex-street’. The sequence begins at the

bottom left panel and may be followed clockwise through the remaining panels.
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stationary cylinders in a perfect uniform stream when an in-line sinusoidal perturbation was added. The forced wake

cases mentioned above, could be somewhat analogous to a trajectory combining an in-line oscillation of the cylinder

with a constant speed displacement (there was no vertical component of the motion). It is interesting to note that for

many of the cases where a merging process is involved, some sort of in-line fluctuation is applied. In our case, even in

the presence of a stronger vertical oscillation, the in-line component necessary to keep the tangential speed constant is

apparently enough to induce merging. We suggest that the packing–unpacking process of the vortices in the primary

street is due to the in-line fluctuation which destabilizes the Kármán array and triggers merging. The presence of a

vertical oscillation is not trivial, because it causes the frequency of the primary wake to be the one set by the vertical

forced oscillation, whereas in the previous studies the frequency of the primary wake corresponds to the shedding

frequency leading to an ordinary Kármán street.

Finally, there is another issue that should be taken into account in the case of the constant-speed path. For the

trajectory with constant streamwise speed, we use U as a reference speed to define both the Reynolds number and the

geometrical wavelength l, which also corresponds to the period of the forced oscillation ðl ¼ TeUÞ. Thus, we may

interpret the parameter l=d both as a nondimensional geometrical wavelength and as a nondimensional period of

forced oscillation ðl=d ¼ TeU=dÞ. With the constant-speed path, on the other hand, we should use the tangential speed

Utg to define the Reynolds number and the nondimensional period of the forced oscillation, but now the geometrical

wavelength must be defined in terms of the average horizontal speed ðlg ¼ TeUxmÞ. This introduces a new aspect

concerning the WR map, as the parameter l=d has a dual interpretation. For example, if we interpret l=d as a

nondimensional period of the forced oscillation, the case analyzed above remains in its original location at point A1.
However, if we interpret l=d as a nondimensional geometrical wavelength, we move to point A2 in the WR map, which

we marked by an empty square in Fig. 4(b).



ARTICLE IN PRESS
F.L. Ponta, H. Aref / Journal of Fluids and Structures 22 (2006) 327–344 343
4. Concluding remarks

We have introduced a mathematical–computational approach to solving flows in a frame of reference attached to a

moving body and we have used this tool to explore the vortex synchronization regions in the amplitude–wavelength

map of WR for low Reynolds number, focusing on the process of splitting which characterizes the formation of the

Pþ S and 2P structures. We proposed a parameter to quantify the level of fluctuation of the natural frequency of the

system and this may shed some light on the 2P–Pþ S problem mentioned in the Introduction.

WR observed coalescence into a large-scale, Kármán-like arrangement of a large number of small vortices produced

at high frequencies of the forced oscillation for sinusoidal trajectories. Working with constant-speed trajectories, we

found the ‘hyper-Kármán vortex street’ arrangement. This phenomenon, characterized by a pairwise merging process

at low frequency that produces a duplication of the period, is, to the best of our knowledge, reported here for the first

time for a moving, vertically oscillating cylinder. The synchronization of our primary vortex street with the vertical

forced oscillation instead of with the Kármán shedding suggests that the pairwise merging phenomenon itself is related

to the structure of the primary street (through the spacing of the vortices) rather than to the original process that

generated the primary street.

Based on point vortex models we are convinced that there exist a multitude of more complex vortex wake patterns

(exotic wakes) than have so far been seen in experiments. Although we understand how to ‘set these up’ if we had

complete control over how to distribute the vorticity in the flow, we do not yet understand how to produce such vortex

wakes by oscillation and rotation of a wake-producing bluff body. We hope to use the numerical tool developed here

for such explorations in the future. It is entirely possible that the purely two-dimensional problem (whatever its

relevance) behaves a bit differently than the problem of a predominantly two-dimensional wake in a three-dimensional

world. Nevertheless, we believe the current numerical exploration is useful for understanding the experiments that have

been performed and a valuable guide for designing future experiments.

Regarding the KLE method itself, we wish to emphasize its economy of computational effort compared to more

classical velocity–pressure approaches due to its vorticity-in-time/velocity-in-space split nature. More important is its

flexibility to manage different trajectories with translational and rotational acceleration [the invariance of the

vorticity–velocity formulation under acceleration of the frame of reference is fully addressed in Speziale (1987)].

Besides, its substantial tolerance to the use of unstructured meshes allows a more suitable meshing of complex

geometries than structured-mesh approaches would permit. Thus, this method gives us a useful tool to study the vortex

structure of wakes for different body shapes and motions. Since it is a new approach, we are still exploring its

capabilities to manage higher-Reynolds-number flows in direct numerical simulation, and its potential to be extended to

large eddy simulation applications. As we have mentioned above, the basic formulation is three-dimensional and has no

special requirements on the divergence field, so the method can be extended to compressible flows and to three-

dimensional analysis.
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